|
1
2 Klemm, C. et al. Evaluation of the titanium dioxide approach for MS analysis of phosphopeptides. J. Mass Spectrom., 2006, 41:1623-1632.
3 Liang, S.S., Makamba, H., Huang, S.Y., & Chen, S.H. Nano-titanium dioxide composites for the enrichment of phosphopeptides. J. Chromatogr., 2006, 1116:38-45.
4
5
6
7 Jensen, S.S. & Larsen, M.R. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom., 2007, 21:3635-3645.
8 Mazanek, M. et al. Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nat. Protocols, 2007, 2:1059-1069.
9
10 Macek, B. et al. Phosphoproteome analysis of E-coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell. Proteomics, 2008, 7:299-307.
11
12 Li, Q.-r., Ning, Z.-b., Tang, J.-s., Nie, S., & Zeng, R. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J. Proteome. Res., 2009, 8:5375-5381.
13 Oppermann, F.S. et al. Large-scale proteomics analysis of the human kinome. Mol. Cell. Proteomics, 2009, 8:1751-1764.
15 Yu, Y.-Q., Fournier, J., Gilar, M., & Gebler, J.C. Phosphopeptide enrichment using microscale titanium dioxide solid phase extraction. J. Sep. Sci., 2009, 32:1189-1199.
16 Aryal, U.K. & Ross, A.R.S. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Rapid Commun. Mass Spectrom., 2010, 24:219-231.
17
18 Gates, M., Tomer, K. & Deterding, L. Comparison of metal and metal oxide media for phosphopeptide enrichment prior to mass spectrometric analyses. J. Am. Soc. Mass Spectrom., 2010, 21:1649-1659.
19 Iwase, Y. et al. A fully automated phosphopeptide purification system for large-scale phosphoproteome analysis. J. Biochem., 2010, 147:689-696.
20 Engholm-Keller, K., Hansen, T.A., Palmisano, G. & Larsen, M.R. Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO2 chromatography applied to proximal EGF signaling. J. Proteome. Res., 2011, 10:5383-5397.
21
22
23 Pinkse, M.W., Lemeer, S., & Heck, A.J. A protocol on the use of titanium dioxide chromatography for phosphoproteomics. Methods Mol. Biol., 2011, 753:215-228.
24 Fukuda, I. et al. Optimization of enrichment conditions on TiO2 chromatography using glycerol as an additive reagent for effective phosphoproteomic analysis. J. Proteome. Res., 2013.
25 Lajoie, M.J. et al. Genomically recoded organisms expand biological functions. Science, 2013, 342:357-360.
26
27 Yu, L.R. & Veenstra, T. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics. Methods Mol. Biol., 2013, 1002:93-103.
28
29 Posewitz, M.C. & Tempst, P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem., 1999, 71:2883-2892.
30 Hart, S.R., Waterfield, M.D., Burlingame, A.L., & Cramer, R. Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS. J. Am. Soc. Mass Spectrom., 2002, 13:1042-1051.
31 Ficarro, S. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol., 2002, 20:301 - 305.
32
33 Barnouin, K.N. et al. Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol. Proteomics, 2005, 5:4376-4388.
35 Kange, R. et al. Comparison of different IMAC techniques used for enrichment of phosphorylated peptides. Journal of Biomolecular Techniques, 2005, 16:91-103.
36
37
38
39 Feng, S. et al. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol. Cell. Proteomics, 2007, 6:1656-1665.
40
41 Lee, J. et al. Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol. Cell. Proteomics, 2007, 6:669-676.
42 Steen, H., Stensballe, A. & Jensen, O.N. Phosphopeptide purification by IMAC with Fe(III) and Ga(III). Cold Spring Harbor Protocols, 2007, 2007:pdb.prot4607.
43
44 Tsai, C.-F. et al. Immobilized metal affinity chromatography revisited: pH/Acid control toward high selectivity in phosphoproteomics. J. Proteome. Res., 2008, 7:4058-4069.
45 Villen, J. & Gygi, S.P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protocols, 2008, 3:1630-1638.
46 Ficarro, S.B. et al. Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal. Chem., 2009, 81:4566-4575.
47 Swaney, D.L., Wenger, C.D., Thomson, J.A., & Coon, J.J. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A., 2009, 106:995-1000.
48 Ye, J. et al. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. J. Proteome. Res., 2010, 9:3561-3573.
49
50 Dephoure, N. & Gygi, S.P. A solid phase extraction-based platform for rapid phosphoproteomic analysis. Methods, 2011, 54:379-386.
51
52 Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Meth, 2013, advance online publication.
53
54 Ruprecht, B. et al. Comprehensive and reproducible phosphopeptide enrichment using Fe-IMAC columns. Mol. Cell. Proteomics, 2014.
55 Holmes, L.D. & Schiller, M.R. Immobilized Iron(III) metal affinity chromatography for the separation of phosphorylated macromolecules: Ligands and applications. J. Liq. Chromatogr. Rel. Technol., 1997, 20:123-142.
57
58