Reference library
2 Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P., & Jørgensen, T.J.D. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics, 2005, 4:873-886.
3 Klemm, C. et al. Evaluation of the titanium dioxide approach for MS analysis of phosphopeptides. J. Mass Spectrom., 2006, 41:1623-1632.
4 Liang, S.S., Makamba, H., Huang, S.Y., & Chen, S.H. Nano-titanium dioxide composites for the enrichment of phosphopeptides. J. Chromatogr., 2006, 1116:38-45.
5 Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006, 127:635-648.
6 Thingholm, T.E., Jorgensen, T.J.D., Jensen, O.N., & Larsen, M.R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protocols, 2006, 1:1929-1935.
7 Hsieh, H.-C., Sheu, C., Shi, F.-K., & Li, D.-T. Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. J. Chromatogr., 2007, 1165:128-135.
8 Jensen, S.S. & Larsen, M.R. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom., 2007, 21:3635-3645.
9 Mazanek, M. et al. Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nat. Protocols, 2007, 2:1059-1069.
10 Yu, L.-R. et al. Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J. Proteome. Res., 2007, 6:4150-4162.
11 Macek, B. et al. Phosphoproteome analysis of E-coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell. Proteomics, 2008, 7:299-307.
12 Simon, E.S., Young, M., Chan, A., Bao, Z.-Q., & Andrews, P.C. Improved enrichment strategies for phosphorylated peptides on titanium dioxide using methyl esterification and pH gradient elution. Anal. Biochem., 2008, 377:234-242.
13 Li, Q.-r., Ning, Z.-b., Tang, J.-s., Nie, S., & Zeng, R. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J. Proteome. Res., 2009, 8:5375-5381.
14 Oppermann, F.S. et al. Large-scale proteomics analysis of the human kinome. Mol. Cell. Proteomics, 2009, 8:1751-1764.
15 Thingholm, T. and Larsen, M. in Phospho-Proteomics, Vol. 527. (ed. M. Graauw), 57-66 (Humana Press, 2009).
16 Yu, Y.-Q., Fournier, J., Gilar, M., & Gebler, J.C. Phosphopeptide enrichment using microscale titanium dioxide solid phase extraction. J. Sep. Sci., 2009, 32:1189-1199.
17 Aryal, U.K. & Ross, A.R.S. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Rapid Commun. Mass Spectrom., 2010, 24:219-231.
18 Eriksson, A. et al. Optimized protocol for on-target phosphopeptide enrichment prior to matrix-assisted laser desorption-ionization mass spectrometry using mesoporous titanium dioxide. Anal. Chem., 2010, 82:4577-4583.
19 Gates, M., Tomer, K. & Deterding, L. Comparison of metal and metal oxide media for phosphopeptide enrichment prior to mass spectrometric analyses. J. Am. Soc. Mass Spectrom., 2010, 21:1649-1659.
20 Iwase, Y. et al. A fully automated phosphopeptide purification system for large-scale phosphoproteome analysis. J. Biochem., 2010, 147:689-696.
21 Engholm-Keller, K., Hansen, T.A., Palmisano, G. & Larsen, M.R. Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO2 chromatography applied to proximal EGF signaling. J. Proteome. Res., 2011, 10:5383-5397.
22 Engholm-Keller, K. & Larsen, M.R. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds - Applications in acidic modification-specific proteomics. Journal of Proteomics, 2011, 75:317-328.
23 Kettenbach, A.N. & Gerber, S.A. Rapid and Reproducible Single-Stage Phosphopeptide Enrichment of Complex Peptide Mixtures: Application to General and Phosphotyrosine-Specific Phosphoproteomics Experiments. Anal. Chem., 2011, 83:7635-7644.
24 Pinkse, M.W., Lemeer, S., & Heck, A.J. A protocol on the use of titanium dioxide chromatography for phosphoproteomics. Methods Mol. Biol., 2011, 753:215-228.
25 Fukuda, I. et al. Optimization of enrichment conditions on TiO2 chromatography using glycerol as an additive reagent for effective phosphoproteomic analysis. J. Proteome. Res., 2013.
26 Lajoie, M.J. et al. Genomically recoded organisms expand biological functions. Science, 2013, 342:357-360.
27 Richardson, B.M., Soderblom, E.J., Thompson, J.W., & Moseley, M.A. Automated, reproducible, titania-based phosphopeptide enrichment strategy for label-free quantitative phosphoproteomics. J Biomol Tech, 2013, 24:8-16.
28 Yu, L.R. & Veenstra, T. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics. Methods Mol. Biol., 2013, 1002:93-103.
29 Li, S. & Dass, C. Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal. Biochem., 1999, 270:9-14.
30 Posewitz, M.C. & Tempst, P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem., 1999, 71:2883-2892.
31 Hart, S.R., Waterfield, M.D., Burlingame, A.L., & Cramer, R. Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS. J. Am. Soc. Mass Spectrom., 2002, 13:1042-1051.
32 Ficarro, S. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol., 2002, 20:301 - 305.
33 Stensballe, A. & Jensen, O.N. Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides. Rapid Commun. Mass Spectrom., 2004, 18:1721-1730.
34 Barnouin, K.N. et al. Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol. Proteomics, 2005, 5:4376-4388.
35 Corthals, G.L., Aebersold, R. & Goodlett, D.R. in Methods in Enzymology, Vol. Volume 405. (ed. A.L. Burlingame), 66-81 (Academic Press, 2005).
36 Kange, R. et al. Comparison of different IMAC techniques used for enrichment of phosphorylated peptides. Journal of Biomolecular Techniques, 2005, 16:91-103.
37 Seeley, E.H., Riggs, L.D. & Regnier, F.E. Reduction of non-specific binding in Ga(III) immobilized metal affinity chromatography for phosphopeptides by using endoproteinase glu-C as the digestive enzyme. J. Chromatogr. B., 2005, 817:81-88.
38 Ndassa, Y.M., Orsi, C., Marto, J.A., Chen, S., & Ross, M.M. Improved immobilized metal affinity chromatography for large-scale phosphoproteomics applications. J. Proteome. Res., 2006, 5:2789-2799.
39 Feng, S. et al. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics, 2007, 7:351-360.
40 Feng, S. et al. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol. Cell. Proteomics, 2007, 6:1656-1665.
41 Imanishi, S.Y., Kochin, V., & Eriksson, J.E. Optimization of phosphopeptide elution conditions in immobilized Fe(III) affinity chromatography. Proteomics, 2007, 7:174-176.
42 Lee, J. et al. Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol. Cell. Proteomics, 2007, 6:669-676.
43 Steen, H., Stensballe, A. & Jensen, O.N. Phosphopeptide purification by IMAC with Fe(III) and Ga(III). Cold Spring Harbor Protocols, 2007, 2007:pdb.prot4607.
44 Thingholm, T.E., Jensen, O.N., Robinson, P.J., & Larsen, M.R. SIMAC (Sequential Elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell. Proteomics, 2008, 7:661-671.
45 Tsai, C.-F. et al. Immobilized metal affinity chromatography revisited: pH/Acid control toward high selectivity in phosphoproteomics. J. Proteome. Res., 2008, 7:4058-4069.
46 Villen, J. & Gygi, S.P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protocols, 2008, 3:1630-1638.
47 Ficarro, S.B. et al. Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal. Chem., 2009, 81:4566-4575.
48 Swaney, D.L., Wenger, C.D., Thomson, J.A., & Coon, J.J. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A., 2009, 106:995-1000.
49 Ye, J. et al. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. J. Proteome. Res., 2010, 9:3561-3573.
50 El Idrissi, K., Eddarir, S., Tokarski, C., & Rolando, C. Immobilized metal affinity chromatography using open tubular capillary for phosphoprotein analysis: Comparison between polymer brush coating and surface functionalization. J. Chromatogr. B., 2011, 879:2852-2859.
51 Dephoure, N. & Gygi, S.P. A solid phase extraction-based platform for rapid phosphoproteomic analysis. Methods, 2011, 54:379-386.
52 Frantzi, M. et al. IMAC fractionation in combination with LC-MS reveals H2B and NIF-1 peptides as potential bladder cancer biomarkers. J. Proteome. Res., 2013.
53 Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Meth, 2013, advance online publication.
54 Zhu, L., Zhang, J. & Guo, Y. Enhanced detection and desalting free protocol for phosphopeptides eluted from immobilized Fe (III) affinity chromatography in direct MALDI TOF analysis. Journal of Proteomics, 2014, 96:360-365.
55 Ruprecht, B. et al. Comprehensive and reproducible phosphopeptide enrichment using Fe-IMAC columns. Mol. Cell. Proteomics, 2014.
56 Holmes, L.D. & Schiller, M.R. Immobilized Iron(III) metal affinity chromatography for the separation of phosphorylated macromolecules: Ligands and applications. J. Liq. Chromatogr. Rel. Technol., 1997, 20:123-142.
57 Subirats, X., Rosés, M. & Bosch, E. On the effect of organic solvent composition on the pH of buffered HPLC mobile phases and the pKa of analytes - A review. Separation & Purification Reviews, 2007, 36:231-255.
58 Bosch, E., Espinosa, S. & Rosés, M. Retention of ionizable compounds on high-performance liquid chromatography: III. Variation of pK values of acids and pH values of buffers in acetonitrile-water mobile phases. J. Chromatogr., 1998, 824:137-146.
59 Modler, H.W. Functional properties of nonfat dairy ingredients - a review. Modification of products containing casein1,2. J. Dairy Sci.,68:2195-2205.
See the
Agilent AssayMAP Bravo Citation Index for published papers that used the
AssayMAP Bravo Platform.